Search results for "scanning tunneling microscopy and spectroscopy"

showing 2 items of 2 documents

Visualization of Moiré Magnons in Monolayer Ferromagnet

2023

| openaire: EC/H2020/788185/EU//E-DESIGN Two-dimensional magnetic materials provide an ideal platform to explore collective many-body excitations associated with spin fluctuations. In particular, it should be feasible to explore, manipulate, and ultimately design magnonic excitations in two-dimensional van der Waals magnets in a controllable way. Here we demonstrate the emergence of moiré magnon excitations, stemming from the interplay of spin-excitations in monolayer CrBr3 and the moiré pattern arising from the lattice mismatch with the underlying substrate. The existence of moiré magnons is further confirmed via inelastic quasiparticle interference, showing the appearance of a dispersion …

monolayer chromium tribromideCondensed Matter - Materials Sciencemagneettiset ominaisuudetCondensed Matter - Mesoscale and Nanoscale PhysicsStrongly Correlated Electrons (cond-mat.str-el)moiré modulationscanning tunneling microscopy and spectroscopyMechanical EngineeringspektroskopiaMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesBioengineeringGeneral ChemistrymikroskopiaCondensed Matter PhysicsCondensed Matter - Strongly Correlated ElectronsMesoscale and Nanoscale Physics (cond-mat.mes-hall)two-dimensional ferromagnetGeneral Materials Sciencemagnon
researchProduct

On-surface Synthesis of a Chiral Graphene Nanoribbon with Mixed Edge Structure.

2020

Abstract Chiral graphene nanoribbons represent an important class of graphene nanomaterials with varying combinations of armchair and zigzag edges conferring them unique structure‐dependent electronic properties. Here, we describe the on‐surface synthesis of an unprecedented cove‐edge chiral GNR with a benzo‐fused backbone on a Au(111) surface using 2,6‐dibromo‐1,5‐diphenylnaphthalene as precursor. The initial precursor self‐assembly and the formation of the chiral GNRs upon annealing are revealed, along with a relatively small electronic bandgap of approximately 1.6 eV, by scanning tunnelling microscopy and spectroscopy.

Band gapAnnealing (metallurgy)530 Physics010402 general chemistry01 natural sciencesBiochemistrygraphene nanoribbonNanomaterialslaw.inventionlawchiral edge540 Chemistrypolycyclic aromatic hydrocarbonon-surface synthesisSpectroscopyQuantum tunnelling010405 organic chemistryChemistryGraphenescanning tunneling microscopy and spectroscopyCommunicationOrganic ChemistryGeneral ChemistryCommunications0104 chemical sciencesZigzagChemical physics570 Life sciences; biologyGraphene nanoribbonsChemistry, an Asian journal
researchProduct